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EVALUATION

Since so many non—compatible dialects have been written calling themselves

the BASIC programming language, the ANSI X3.J2 committee is defining a common

core, that is, a Nucleus, that must be included in valid BASIC interpreters

and compilers. However, the X3J2’s fundamental draft specification consisted

of English explanations of the programming language’s semantics as addendums

to the more formalized Backus—Naur format of the syntax.

The USAF suppor ts the stabilization and formulation philosophy of this

committee. To provide the desired integrity of the nucleus specification

and , at the same time , to exercise SEMANOL , a specifica tion language under

developmen t , the Air Force contributed an evaluation and formalized

specification of the recommended X3J2 draft specification semantics By

defining the BASIC Nucleus in SEMANOL , numerous po ten tial inconsistencies

and discrepancies in the English—type specification were quickly and

efficiently discovered.

JOHN M. IVES, Cap tain , USAF
Project Engineer
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INTRODUCTION

The project reported upon herein had as its objective the preparation

of a forma l SEMANOL speci f ication of the Minimal BASIC programming language

as given by the X3J2/76—Ol draft proposal of the American National Standards

Committee. The X3J2 draft proposal was of a conventional form and so relied

heav ily upon the use of prose text . Consequently, it was recognized that it

was likely to be incomp lete and that many parts would very likely be subject

to varying reader interpretations. The preparation of a SEMANOL specification

could then be expected to reveal such ambiguities , as well as to prov ide a

formal specification document that would be complete , precise , and unif ormly
understood. It was also intended that the SEMANOL specification of Minimal

BASIC be operable with a SEMANOL Interpreter program upon the HIS—6180 Multics

computer system; the formal specification could then be computer tested and

otherwise be available for use in programming language development activities .

These objectives were all successfully met. A formal SEMANOL specifica-

tion of Minimal BASIC was written in the SEMANOL(76) metalanguage . SEMANOL(76),

developed under concurrent contract F306O2—76—C—O238 , is the newest version of

the SEMANOL metalanguage , and its use meant that the readability of the result-

ing Minimal BASIC specification was thereby improved . The use of SEMANOL(76)

also allowed the newest version of the SEMANOL Interpreter program to be used ,

with an accompanying substantial improvement in processing efficiency and user

convenience. The specification was completed and was thoroughly tested with

the SEMANOL(76) Interpreter in the performance period ; an operational spec ifi—

cation of Minimal BASIC now exists.

The prepara tion of the SEMANOL (76) specification of Minimal BASIC

led to the discovery of many instances of seemingly incomp lete , unclear , or
contradictory description in the X3J2 draft proposal. These cases were re-

ported to Rome Air Development Center (RADC) in three reports , and hence to

the X3J2 committee; many of these items are repeated later within this report.

While the writing of a SEMANOL(76) specification could be expected to reveal

some problems , it is fel t tha t the sens it ivi ty of the TRW gr oup do ing this
analysis to the sub tleties of language design and descr ip t ion served to y ield
a more comprehensive list of ambiguities than would normally be expec ted .

1
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The SEMANOL(76) specification of Minimal BASIC prodticed in th is  p ro j ec t  can

be useful  in several ways.  Since the  SEMAN OL(7 6 )  no t a t ion  is a specia l  sort  of

programming language that can be processed by the SEMANOL(76) Interpreter , the

speci f ica t ion  can be computer tested u n t i l  agreement is reached tha t  the spec—

if icat ion  accurately re f lec ts  its des igners ’ i n t en t ions .  Great conf idence  can

thus be gained that  Minima l BASIC is properly d e f i n e d .  Th is form of s p e c i f i -

cation then provides:

1. A specification that can be uniformaly understood b y those who read

it .  This speci f ica t ion  precision will  make clear what  ~‘1i n i m a ] BASIC

is , and so will allow discussion about the language to be clearly and

precisely expressed . We believe tha t  the undeniable  p r e c i s i o n  of

SEMANOL(76) retains a degree of readabi l i ty  t h a t  is adequa t e  even f r

those having only a general f ami l i a r i ty  with the  SENAN OL(7 6 ) m e t a —

language ; this readability results from the intuitive clarity pr -t’vided

by the use of the SEMANOL(76) metalanguage and well developed conven-

tions for  its application.

2. A description of Minimal BASIC which can be used in the  development  of

language processors built to unambiguous and complete specificat ions.

3. A means of directly testing language processor conformance to that

specification. Testing itself must still be done through the use of

a carefully constructed set of test programs written in Minimal BASIC.

However, the correct result of executing these tests is determined by

use of the SEMANOL(76) Interpreter program , and it is these results

against which language processors will be measured. This test pro-

cedure is especially attractive since implementation dependent seman—

tics , including machine dependencies , can be par t of th e SEM ANOL (7 6)

s p e c i f i c a t i o n .

4. A good means for testing the effect of proposed language changes.

Such changes can be described in SEMANOL(76) and the currently

accepted language specification modified to include the proposal. The

descr iptive process itself should reveal the scope and i~~p l i c a t i e n s  of

the change , while testing through use of t h e Interpreter -.i ll allow

the effect of these changes to be verified. Changes can thus he

f ully understood before they are adopted .

2



5. Assistance in preparing programming manuals which are consistent

with language processor implementations . Although it is not expected

that the SEMANOL(76) specification of Minimal BASIC will ~e used by

most programmers as their language reference document, a conventional

programming manual can be prepared from the same SEMANOL(76) descrip-

tive foundation as the language processor with the expectation that

the two will closely match . In addition , the SEMANOL(76) specifica-

tion can be used in programming organiza tions as a reference document
to answer the subtle and difficult questions about Minimal BASIC

that the conventional manual fails to treat adequately.
The ren~ainder of this report describes the way in which this project was

performe d , presents many of the ambiguities found in the X3J2 draft proposal ,
describes the SEMANOL(76) specification of Minimal BASIC that was delivered ,

and includes a brief introduction to the SEMANOL(76) system of semantic de-

scr iption, A discussion of a promising approach to formalizing optimization

and machine effects is also given; this investiga tion wen t somewha t bey ond the
expected scope of perf ormanc e, but was prompted by the question of “conformance”

as it was given in the X3J2 draft proposal.

3 
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PROJECT PERFORMANCE

The work described in this report was performed in the nine month period

of May 1976 through January 1971 .  While much of the work was similar to that

which would be involved in writing a conventional computer program , the

special nature of writing a formal specification of a programming language

meant that some of the activities were somewhat unconventional.

The central task to be performed in this project was the preparation of

a formal SEMANOL metalanguage specification of the Minimal BASIC programming
language. The source document used in performing this task was the “Pr oposed
American National Standard for Minimal BASIC” of January 1976 (X3J2/76—Ol).

The X3J2 docu~nent described Minimal BASIC in terms of a conventional context—

free syntax notation and an English prose description of syntactic constraints ,

semantic actions, and certain error treatments. The document augmented the

language presentation with a summary of committee discussions and votes.

Generally speaking , this document seemed to be caref ully done ; nevertheless ,

it presented many problems to arriving at a clear understanding of what Minimal

BASIC was meant to be.

A preliminary analysis of the Minimal BASIC draft proposal was done first

to formulate the general design approach tc be followed and to identify language

features that were unclear. This analysis led to the construction of lists of

(1) implementation dependent parameters , (2) error cond itions and responses ,

and (3) non—context—free restrictions to be enforced . These lists were derived

from the draft proposal and frequently, particularly for  imp lementation para-
meters , represented extensions to the explicit items of the draft proposal .
These extensions reflected the needs of our planned implementation , as well as

sometimes providing detail that seemed to be missing otherwise. Additionall y ,

a list of questions about the draft proposal was prepared . This list of sus-

pec ted ambigu it ies was compiled wi th grea t care , and items were incl uded only

after an intensive search of the Minimal BASIC documen t failed to provide a

resolution .

The organization and content of the formal specification that was delivered

are described later in this report. The writing of that specification began

with the creation of a context—free grammar; this grammar corresponds very

4



closely with that of the draft proposal (although notationally somewhat
dif feren t, of course). The semantics of high level interpretation control were

done next, followed by description of the semantics of the various statement

types , standard naming conventions, and input—output . Floating—point evaluation

was done independently and later integrated into the specification . As parts

of the specification were written, they were processed by the Translator until

they were syntactically correct. As comp lete units were developed , they were
processed by the Executer (equivalent to executing traditional programs) with

simple test cases. Code writing and testing overlapped ,and emphasis was given

to the early creation of an operational specification that would be capable of

driving the interpretation of very simple Minimal BASIC programs. The fuller

specif icat ion was then developed incremental ly.

The computer used in this project was the HIS—6180 Multics system locaLed

at Rome Air Development Center . The computer programs (i.e., the Trans-

lator and Executer) used to process the formal specification were actually part

of two different SEMANOL systems. The SEMANOL(73) system, developed earlier ,
was operational upon Multics when this project began. However, we were engaged
in a concurrent project to improve the SEMANOL(73) system in contract F30602—

76—C—0238. The concurrent project was planned to produce an improved meta—

language , SEMANOL (7 6),  and more e f f ic ient versions of th~ Translator and
Executer . The specification of Minimal BASIC was thus written initiaUy in

SEMANOL(73) in the expectation that it would later be converted to SEMANOL(76).

Most testing was done by use of the SEME~NOL(73) Translator and Executer , and

the test results were then confirmed after the specification of Minimal BASIC

was converted to the SEMANOL(76) metalanguage . Fortunately, the SEMANOL(76)

Transla tor and Execu ter were working well when needed by this project. The

conversion to SEMANOL(76) also went very well because it was anticipated and

because the two metalanguage dialects are, after all, not radically different .

Note that the context—sensitive constraints for Minimal BASIC were written

d ire ct ly in SEMANOL(76 ) , due to SEMANOL(76)’s greatly improved facilities for

s t a t ing  such condi t ions , and so const i tu ted an exception to this general

prac tice. While this conversion took some small effort , it produced a

specification of Minima l BASIC that has the visual advantage of improved

SEMANOL(26) metalanguage readability and the operational advantage granted by

the faster SEMAN OL(7 6)  Interpreter. It is therefore , a better specification5



than it would have been if it had been done with the SEMANOL(73) system.

While the early analysis of the X3J2 proposed standard revealed some

ambiguities , the detailed specification design process and actual coding

exposed others (and sometimes even clarified items found before that had seemed

to be problems). A list of ambiguities found early in the performance period

was delivered to RADC on 30 August 1976; it was then forwarded to the  Y 3 2

commit tee  by RAD C as a public comment on the draft proposal. This e r i r inal F

list was extensively enlarged through further analysis and tPc enllI rg~~l l i ~~t

sent to RADC on 19 November 1976. This second list of aillhiga itl e s also

contained our intended solution for each case , and so alloyed ~,‘P C to ev.

the acceptability of our interpretations. Many of these nn.I- i gt~i ti ee ~~~ -or

reaction to each are presented later in this report. Th~ revised Y~~ 2 ‘- i c  i r n i

BASIC specification of December 1976 was also reviewed to de t ~~rm i ne w h ic h

ambiguities of the earlier draft proposal had been resolved and which had not . F
A careful reading of the December 1976 document , but c e r t a i n ly  no t  an intensive

study, was also conducted to determine if new amb i guities had been introduced

(a few were found). The results of this work were given t o  }~ADC in January

1977. Note that the December 1976 revision was otherwise ignored by thi s

project because of its late arrival. In summary, a diligent et fort was Coil-

ducted to find definitional problems in the X3J2 dra ft prop osal anc to repo rt

these to RADC in a timely fashion . Furthermore , proposed scluti ons ~or

problem were made to RADC so that RADC participation in each T!-d-~

was insured . The ability of a SEMANOL application to find proI-1c: -c~ hr c

ventional specification methods was again e v i d e n t  in  this perforc~irce .

One spec ial qual ity colored the way in which the S1P1APML (76) coding et

the Minimal BASIC specification was done , and that is the desire for rt ndnl’ i lit y .

A SEMANOL(76) program is to be read by people , and readabilit y is shaped cit

least as much by style as It is by the language used. Past projects had

established an organization and set of conventions that were felt h e lp ful;

these were applied her- , but they offered only a general outline since e n d .

programming language is somewhat unique . For Minimal BASIC , the major p r - I

was how best to differentiate between implementation independent ion tu r es - I

the language and those that are meant to be determined by a 1anguagc r cen- -o r.

The X3J2 draf t proposal considered implementation parameters , if inc rp l e t .  1’. ,

and so provided rare assistance in this regard . However , many param ete rs ‘-.‘er~

6
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overlooked there and needed to be recognized during the specification. There

are  also details of implementation , such as those dealing with arithmetic ,

tha t  must  be suppl ied  in a SEMANOL(76) specification , but which were a form

of overspecification to the X3J2 committee . We have tried to collect all such

parameter definitions and imp lementation specific semantics into a single

section of the specification , and then to write the remainder of the specif ica—

t ioi -. s ~- tha t these implementation dependent definitions could he easil y

r e c o g n i z e d .  Fu r the rmore , i t  shou ld  be r e - l a t i v e l \ -  easy f o r  t h e  reader  to ignore

t h c~ e d e t a i l s  wh i l e  s t i l l  g a i n i n g  t h e  h i g h e r  l eve l  nearing of t h e  s e m a n t i c s .

Th i- ~ interest , in hav ing  a s p e c i f i c a t i o n  s t r u c t u re  that can be read to  th e

do: th .- :,int ed by the render , has affect ed all parts of th0 ~p eci fi cat i n .

re virtoc of the- sl;~ A~ ()1.(7h) s~ st or. is that a specification of a program—

:-~in~ Utr~ u~ ge that is n-rit ton in the SidP’-.hOl.C’o) notalanguage can be computer

tested by use of the- i n t e r p r e t e r .  The t ~~ ‘ ing of the Mini m a l BASI( spec iti ca—

t i- cr deliv ered in t h i s  p r o j e c t  ~- .-as c o n s i d e r e d  r e l a t i v e l y  t h o r o u g h , w i t h

a r i t h m e t i c  e x p r e s s ion  e v a l u a t i o n  semant ics  b e i n g  t e s t ed  e s p e c i a l l y  w e l l .  The

t e s t i n g  was done w i t h  small  M i n i m a l  BASIC p r ograms , each of which n o r m a l l y

dealt  wi th  a p a r t i c u l a r  form of s t a t ement  in a given c o n t e x t .  Tes t ing  of

comp l ica ted  programs did not appear  u s e f u l  in th i s  p r o j e c t  a ’d  so was not done .

All pa r t s  of the Minima l BASIC programming language were tested , includ ing

samples of ~ 1l error conditions and context—sensitic~ syntactic restrictions.

Well over one hundred test programs were successfully pr ocessed in this test

phase. While i t  would be fool ish to claim that  the r e s u l t i n g  spec i f i ca t ion

is without error , we do feel it has been adequately tested and so is a sound

product.

It should also be noted that performance upon this project raised

var ious  questions about formal semantics and the way they migh t be trea ted
w i t h i n  SEMANO L(76) theory and p rac t i ce .  In the case of Minimal BASIC , par-

ticular a t t e n t i o n  was given to exploring methods by which imp lementation

dependencies might be precisel y characterized without being considered over—

specified. It was felt that practical standards would certainly benef it by
be ing able to include a characterization more useful than “implemen tation
defined . Minima l BASIC is simpler than most programming languages and had

been described in the draft proposal with some regard for these matters ; it

t in — . seemed to be a likely candidate for study in this regard. The method

7 
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developed through our study appears in the section on Formalization of

Implementation Dependencies in this report. The general method and its

specific application to Minimal BASIC were worked out in moderate detail ,

even to the extent that the specification delivered is written to accommodate

a standardized description of computer arithmetic. Unfortunately , this inves-

tigation had not been foreseen and so it could not be pursued further in this

contract.

In summary, this project succeeded. It produccd a SEMANOL(76) specifica-

tion of Minimal BASIC. The specification is readable and well tested . Am-

biguities in the X3J2 draft proposal were discovered , repor ted to RAD C , and

resolved for purposes of our specification . Beyond this , a prom ising method

for formally dealing with implementation dependencies was devised and
reported upon .

8 
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AN INTRODUCTION TO SEMANOL(76)

SEMANOL(76) is intended for use in describing (procedural) programming

languages. A specification written in the SEM.AN OL(76) metalanguage is meant

to provide an exact and complete definition of a programming language that is

comprehensible to a sui tably trained reader. That is , SEMANOL(76 ) is designed

to supply people wi th  a basis for communication about programming languages

t h a t  is more precise than commonly employed description methods. Additionally , -•

the f o r m a l i t y  of the SEMANOL(76) metalanguage permits operational use of the

s p e c i f i c a t i o n  to be made upon a computer.

The spec i f i ca t ion  method adopted is algori thmic.  This choice stems f rom

a feel ing tha t  the semantics of pr ogramming languages ought to be explained in

t h i s  way . That is , semantics are concerned wi th  explaining how something

happens  and not jus t  in character iz ing an inpu t—outpu t  relat ionship. Cer ta in ly

t h i s  is the way in which de signers , compiler writers , and application program-

mers generally view the semantics of a programming language . Having a d i rect

correspondence  between the formal ,’ operat ional , SEMANOL t76) expression of

language semantics and a reader ’s in tu i t ive  conception of a language y ields

a spec i f i c a t i on  method that can be easily unders tood.  An algorithmic me thod

also pe rmi t s  language deta i ls , such as those speciflo to a given imp lementation ,

to be descr ibed exactly when desired .

The SEMAN OL(76) method considers a programming system , S , to be defined

by S = (P , I , T , -I) where

P = The set of programs which can be expressed in the programming system.

I = The set of input values.

T = The set of output traces. The trace is an ordered record of signifi—

cant act ions (such as assignment) tha t  are performed by the program

as it is executed ; it is the visible man i fe s t a t i on  of performing the

algorithm that is the operational SEMANOL(76) specification of

semantics. The trace is thus similar to a state sequence.

= The semantic operator. This operator , given as ~ : P x I -
~ T, is

cons idered to def ine the “meaning” of a program.

9
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P, I, and T are each sets of strings which are specified by ~~, and wh ose

ind iv idual members will be deno ted by the correspond ing lower ca se le tters

(i.e., p r P, i £ I, t £ T.). The effect of sxecuting a given program , p, can

then be deno ted in terms of the seman tic opera tor by

~ (p, i) = t

Thus ~ specifies the trace produced by any program in the system when that

program is executed with any input value sequence . The SEMANOL(76) meta—

language is used for programming the semantic operator , thereby providing a

method for formal specification of a progromming language . Since the SEMANOL(76)

me talanguage is itself a programming language , it also belongs to a programming

system. To differentiate between these two systems , we will use the subscript

j to identify elements of the programming system being defined by a SEMANOL(76)
program (e.g., Minimal BASIC) and the subscript s to identify elements of the

SEMANOL(76) system. The semantics of a Minimal BASIC program , p ., are then

expressed by

= t
i

The semantic operator for Minimal BASIC, 7~~, is expressed as a SEMANOL(76)

program , p ,  which in turn is interpreted by a semantic operator for the
r SEMANOL (76) programming system, 

~~~~

.

Thus we have

= 
~~~~~~~~ =

and a formal definition of Minimal BASIC is provided by 
~~~~~~ 

The SEMANOL(76)

seman tic opera tor , 
~~~~
, is defined in the SEMANOL(76) Reference Manual and has

been implemented by the SEMANOL (76) Interpreter computer program.

This general view of language definition is shown graphical ly in Figure 1.

As shown there , these levels of semantic specification correspond ta defining

a virtual machine for SEMANOL (76) and , based on tha t , one for Minimal BASIC.

10
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As observed , the SEMANOL(76) metalanguage is mean t to describe seman tic

operators. Consequently , it is a high level language designed f or the spec i f i c

purpose of completely and exactly describing the syntax and semantics of pro-

cedural programming languages. The metalanguage permits high—level expres-

siveness and makes no special effort to minimize the primitives available. It

thus con tains some redundancy in its primi tives and permits syntactic variations

where this can aid reader interpretation . Where possible , “convent ional”

notation, as found in mathematical exposition and in other programming lanpuages ,

is emp loyed so that a reader ’s intuition will generally lead to a correct inter-

pretat ion of SEMANOL(76) code. The semantics of execut ion are descr ibed by the

use of SEMANOL(76) in terms of parse trees and elements of the original source

program text, and so can be directly understood by the reader.
While the SEMANOL(76) metalanguage has many features common to o the r

programming languages, its unique domain of application means that many of its

features are not so common . Like many programming languages , it has:

imperative, cond itional , and repetition control statements; Boolean constants
and functions; procedure definitions ; recursion abilities; a rich set of

character string operators; functional definitions that provide case selection ;

etc. However, many other features are unusual. SEMANOL(76) provides facilities

for defining a context—free grammar , including a feature for context—sensitive

specificat ion of where spaces may appear , and coup les tha t  w i t h  an o p e r a t o r

for generating a parse tree for a given string from that grammar. Various

operators are then available for use upon th i s  parse tree , including a group

for tree traversal. SEMANOL(76) deals with sequences and offers high—level

iterators , including existence tests , for use on these structures. ~\r ithrce -tic

is done on numeric strings and so has a significance that is indepen dent ci

host machine factors; the arithmetic specified for Minimal BASIC is c o ntr o ll e d

by the one doing the specification in SEMANOL(76) and n o t  d i c t a t e d  by th e fact

that the SEMANOL (76) system is imp l emented on ci HIS—6180 computer. .ssiprment

and reference  ar e ac compl ished thr ough use o f a sin gle l evel a s s o c i a t i v e  st  r g t

mechanism. An effor t has been made in designing, and revising, the S b ’-b ’bd (76)

metalanguage to provide these features in a manner that would s t r e s s  read-

ability; it is a language where the prospective reader ’s vi ewp oint has be-en

a dominant influence.

12
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Programs written in SEI4ANOL (76), such as the specification of Minimal

BASIC , can then be processed by the SEMANOL(76) Interpreter. The SEMANOL(76’)

Interpreter accepts a SEMANOL(76) specification of a programming language and

uses that input specification to realize the semantic effect of (i.e., to

execute) programs written in the language thus defined . By virtue of the

I n t e r p r e t e r , SEMANOL(76) specifications can themselves be tested and debugged .

Fur the rmore , an opera t iona l  s tandard  foi  the  d e f i n e d  language is thus created .

The o p e r a t i o n  of the elements that constitute the SEMANOL(76) system is

shown in F igure  2.  The broken line encloses the SE~1ANOL(76) Interpreter , which

can be seen to a c t u a l ly  cons is t  of two loosely connected programs identified

as t h e  T r a n s l a t o r  and the  E x e c u t e r .  The T r a n s l a t o r  accepts  the  SEMANOL (7 6 )
program de s c r i b i n g  a p rog ramm ing  language  and conver t s  it to SIL code. The

SIL code is an a l p h a n u m e r i c  r e p r e s e n t a t i o n  t h a t  is much more convenientl y

processed than the original text. The SIL f i l e  is read by the Execute r  pro-

gram , and the SIT, code is then used to control , or drive , the Executer program .

The present Interpreter is operational upon the IIIS—6180 Multics System .

I t  is to be emp has ized  t ha t  t h i s  sytem is in t e rp re t i ve, and t h a t  n e i t h e r

the d e f in e d  language program , nor the  SEN AN OL (7 6)  program desc r ib ing  the  de-

fined language , are translated (i.e., comp iled) to machine code. The Minimal

BASIC program text is i n t e r p r e t i v e ly “executed ” by the S~~lAN OL (7 6)  p rogram

describing the Minima l BASIC language , wh i le the  SEMANOL ( 76) p rogram t e x t

( i . e . ,  the SIL code) is , in turn , i n t e r p r e t e d  by the  Executer  p r o g r a m .

This  t w o — l e v e l  i n t e r p r e t a t i o n  does mean t h a t  the execution time of test

programs  is s low . The f a c t  t ha t  test programs are small has made the  s i t u a t i o n

a c c e p t a b l e .  However , as the  SEMA NOL(76)  sys tem has  begun to emerge as a

pr ~~ape -c t i ve p a r t  of l anguage  s t a n d a r d i z a t i o n  and con t ro l , the  impor t ance  of

e f f i c i e n c y  has i n c re a s e d .  Thus e f f o r t s  are underway to improve the current

pro .;r - irr - - oid a l s o  to d e v e l o p  a new des ign . The new des ign  would move in the

d i  root ion of -ba np in ~- tb~ c u r r e n t  T r a n s l a t o r  into a gene rato r  of e x e c u t a b l e

e a de  (f~~, •, it would gener a te i n t e r p r e t e r s) .  Th i s  new d e s i g n  would  remove one

- ‘e of irte r a r etat i o n and so provide a substantiall y more efficient process.
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DESCR I PTION OUTPUT INTERPRETATION

Figure  2:  SEMANOL(76)  I n t e r p r e t e r  T.og ic
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THE MINIMAL BASIC SPECIFICATION

The product ion of a SEMANOL(76) metalanguage specification of the Minimal

BASIC pr ogramming language was the major accomp lishment of this project. This

specification is complete and was extensively computer tested; it is believed

to be in sound condition . The nature of this specification of Minimal BASIC

is discussed hereinafter.

The SEMANOL(76) metalanguage provides a normalized notation to be used for

describir ’ g the syntax and semantics of programming languages. The metalanguage ,

and ce r ta in ly  the under ly ing theory of semantics as well as the specifica tion
conventions used with SEMANOL(76), result in a programming language being de-

f ined  in opera tional , in terpre tive , terms. Indeed , it is fa i r  to think of the

SEMANOL(76) metalanguage as a programming language meant to be used in wr itin g
programs tha t are in te rpre te r s  of source text strings of the language being

def ined . Since the Minima l BASIC specifica tion is such a program , it is de—

scr ibed here largely in its role as a computer program that processes Minimal
BASIC program text . This means that the organization of the specification is

dealt with , signh [i’-’ant data structures discussed , model ing algor ithms de scr ibed ,

and styl istic conventions generally mentioned . As with any conventional doc-

ument or comp uter program , the manner in which the Minimal BASIC specification

was written reflects a certain individualism , even though constrained by con—

ventions and the app lication of standardized techniques. Hence , the Minimal
BASIC “spec ification program” presented here is certainly not the only one tha t

could be allowed: nor is i t  likely to satisf y all readers wi th regard to its
readability (despite our hopes that it might). But it has been carefully

c o m p u t e r  t e s ted , and th i s  does give us confidence that it is a valid specifi—

c a t i o n  of Minima l BASIC.

We should  no te  t h a t  t h i s  sec t ion  of the repor t  is meant to serve as an

i n t r o d u c t i o n  to the  f o r m a l  SEMANOL(76) specification of Minima l BASIC as well

as to be a s e l f — s u f f i c i e n t  description of that specification. So that the

t ex t  may do both , t h i s  sec t ion uses the actual names appearing in the semantic

and syntactic definitions of the  spec i f i ca t ion. These names are thought  to

be suggestive enough of their definitions that they may he informally used

15



here without comment (i.e., they are strongly intuitive). The definition

names are generally hyphenated , and can be recongized in that way (e.g.,

numeric—function , numeric—let—statement—effect).

The operation of the specification program is shown in Figure 3. The text

of a candidate Minimal BASIC program is first parsed. This parse step uses a

context—free grammar , given by SEMANOL(76) syntac tic definitions , and is

accomplished in response to the #CONTEXT—FREE—PARSE operator of SEMANOL(76).

A successful parse is followed by testing of the parsed program to determine
that it complies with the seventeen context—sensitive restraints that valid

Minimal BASIC programs must meet. Syntactically valid programs then have their

execution effects (i.e., semantics) precisely modeled in terms of program oper—

ation. Program operation is modeled with regard to statement effects , state-

men t sequencing, expression evaluation , and storage modeling. Because this

specification was to be tested and otherwise usable, it is a spec i f ica t ion  of

a specific language processor ; it thus contains semantic def ini t ions  that
explain execution in very exact terms for a specific computer. This general

approa ch is expanded upon in what follows .

The f i rst element of the SEMANOL(76) specification program 4~~ a declara—

tions section; this section contains the names of any global variables used

in the specification of Minimal BASIC and the names of syntactic components.

Only 12 global variables are used in describing Minimal BASIC , and the use of

most of these is described subsequently. Syntactic components , on the other

hand , are declared in generous number. Because SEMANOL(76) is a functional

language, there are many functions in the Minimal BASIC specification that are
invoked repeatedly with constant parse tree arguments. These functions would

thus compute invariant values needlessly. By declaring the names of those

definitions that produce constant values for a given parse tree argument , the

SEMANOL(76) Interpreter program is told to perform the computation of these

functions only once f~ r a given argument. The computed value is then associated

with the argument node on the parse tree; later invocations of the function for

that node need only retrieve the saved value rather than perform the computation .

Syntactic components thereby contribute to processing efficiency but not to

semantic description per se. Their use does mean that there is little perform—

ance penal ty paid for  being able to widely employ a readable functional notation .

16 
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Figure 3: SpecificatioTi Operation
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The first operational step involved in defining Minimal BASIC is to parse

the given program text. The syntactic definition structure used in the

SEMANOL(76) metalanguage is similar to other context—free syntax notations.

Thus the grammar we have defined for Minimal BASIC is able to be similar to that

of the X3J2 document; it differs only when necessary to support semantic de-

scription or to correct discovered am biguities . The result of parsing an input

string with the grammar is to transform the given source program into a

corresponding parse tree representation. If the program cannot be parsed or

would yield multip le parses , a diagnostic message results. Observe that the

second error condition reveals that the grammar defined by the SEMANOL(76)

def initions is ambiguous; hence , the formal specification is itself in error.
Since the SEMANOL(76) parsing operator is unrestrictive , the grammars that are

allowed cannot be proven unambiguous but only car ef ully tested in an effort

to avoid ambiguity. The specification thus recognizes this potential residual

error condition. (We have considered changing SEMANOL(76) in this regard , so

that grammars would be restricted to the extent that they could be proven

unambiguous, but have not yet convinced ourselves that this is appropriate

for a formal description system of wide applicability). The parse tree rep-

resentation formed here then becomes the basis for further specification .

Following a successful parse , a series of tests is made upon the parse tree

representation to decide whether or not the context—sensitive syntactic restric—

tions of Minimal BASIC have been met. These syntactic restrictions are con-

ditions that cannot be expressed in a context—free grammar , and so must be

separately prescribed . The restrictions given in the SEMANOL(76) specification

for Minimal BASIC are drawn directly from the X3J2 documen t , so their inclusion

needs no further justfication. The imposition of these restrictions at this

point in the specification , prior to execution (e.g., as a comp iler implemen—

tation would commonly impose them), is in keeping with the X3J2 document. Fo’

example, the requirement that numeric—function names be uni que is meant to

app ly to a progr am as a whole , ra ther than app lying only to numeric—function
names that are actuall; invoked during execution. Observe that the notion of

a legal (i.e., conforming) Minimal BASIC program is affected by the choice of

when the test is applied ; thus the placement chosen for these tests within

the Minimal BASIC specification is significant.

18



The specifications of these context—sensitive tests use the high—level

iterators of SEMANOL(76), #FOR—ALL and 1/THERE—EXISTS , espec ially, to advantage .

The most prevalen t approach is to construct a sequence of program elements of

interest , and then to test each in turn against the remainder of the program

for existence , or lack , of the desired condition. For example, a #SEQUENCE—OF

numeric-function—reference nodes is formed from the parse tree in one test.

(The elements of this sequence are easily specif ied since the parsing process
has caused each such reference to be identified and the associated syntax

class name to be included in the parse—tree representation.) Each reference

is selected in turn by the #FOR—ALL iterator , and tested aga inst all the
elements of the 1/SEQUENCE—OF def—statements to see if a name match exists. If

not , a “missing—function—definition” condition has been found ; the prospective

M inimal  BASIC program is thereby deemed illegal, and it is in terpre ted fur ther
only to the extent that the remaining context—sensitive tests are performed.

Note that the def—statement sequence is declared as a syntactic component , and

so is computed only once in this process (even though not explicitly computed

und saved). The iterator and sequencing operators of SEMANOL(76),combined

with the use of parsed represen tation , result in these tests being stated

succ inctly and clearly.

The sema n tics of program execution are then exp la ined in opera tional
terms. A top—level control section is used to describe both the computational

effec ts of executing a statement and the execution successor for each statement.

The computational consequences are described in a series of semantic effects

def ini t ions, a set of defini tions being associated with each statemen t class
and thoroughly treating all possibilities. Similarly, sequenc ing rules are
given by a series of successor definitions. Major subsidiary parts of the

spec ification then deal with evaluation details and standard names used in

storage modeling . The various Minimal BASIC statement types are considered

within this framework in what follows.

The primary computational elements in our specification of Minimal BASIC

are the numeric—let—statement , string—let—statement , input—statement , read—

statement , and print—statement; the consequence of executing each is given in

an associated “e f f ec t” semantic definition (e.g., numeric—let—statement—effect). -
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The numeric—let—statement—effect is to assign the value of the right—hand.

side expression to the left—hand—side name. The semantics of evaluation

are then contained in numeric—value, described later, while the formation of

the left—hand—side name is described by a standard—name definition , also

described later. Thus the high level semantics are given in this control

section, with the details to be found in subsidiary semantic definitions.

The semantics of the string—let statement are handled in an analogous manner ,

in this case using string—value for right—hand—side evaluation.

The effect of input—statement execution is given for the interactive case.

This means that an input—prompt—character is first output. After that, an

input—reply is read , checked , and its values assigned. The output listing

produced by operation of this definition simulates that which would be produced

at a terminal during an interactive input dialogue. The semantic definition

here makes use of the small context—free grammar for input—rep ly to parse

the input string for ease of processing; it also uses the graimnar of numeric—

constant in a recognition test. The conversion of numeric input strings for

assignment is accomplished by the implementation—numeric—representation con—

version operator (considered later), thus defining the mapping from an external

representation to an internal representation (the X3J2 document expects such a

distinction, in recognition of the use of various computer dependent arith-

metics). No such mapping is needed for strings,eexcept possibly to remove

quotes, since the semantics of string ~~erations are independent of implemen-

tation representation. Much of the semantics of the input—statement then deal

with testing the input—reply for correctness (e.g., the right number of data

items, matching types, items being in range) and describing the action to be

taken in the case of error. All errors result in diagnostic messages being

sent to the user and the input—statement processing being repeated ; that is,

the semantics call for the user to re—submit incorrect input—replies. Note

that no assignments are made until all data items in an input—reply have been

judged valid .

The series of input- replies for a Minimal BASIC program is read as a single

block of characters by the 1/INPUT operator , when processing the first execution

of an input statement , and assigned to the global variable input—file. The

20
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modeling of input—statement effects then provides for unblocking these input—

replies. This is accomplished by scanning to the end—of—input—reply—char ,

assigning the input—reply thus delimited to the global variable input—line,

and then removing this input—reply from the input—file string. The model thus

does not literally provide interaction, but does permit any input dialogue to

be simulated .

The semantics of the read—statement are very similar, and the conversions

of strings to internal representations are identical with those of the input—

statement. The error semantics, naturally, differ somewhat. The current

position in the sequence of data items, extracted from data—statements, Is

main tained in the global variable data—list—pointer. This position index is

incremen ted each time an element is read , and is reset to one by the restore—

statement—effect. It should be noted that the conversion of data—statement

constants must be specified to (effectively) occur at read—statement invocation

time , as described here , since the type of the data items cannot be determined

by their ,yntax; the type of the constants depenas upon the type of the variables

to which they are assigned. This condition is certainly implied by the

SEMANOL(76) specification , but it may be a case in which the constraints upon

an implementation are not as obvious as one would like.

The semantics of p r i n t — s t a t e m e n t — e f f e c t  are lengthy because the format t ing

possibilities of Minimal BASIC are rather extensive ; however , they are generally
straightforward except for numeric conversion specification. Numeric conversion

is comp licat ed becaus e the pr inted form depends upon the value of a number ,
d ifferent ranges having different formats , and because imp lemen tation f actors
i n t r u d e  here .  The approach used is to convert the implementat ion—number

r e p r e s e n t a t i o n  to the corresponding canonical—form , a string forma t tha t

conforms  to a reduced Minimal BASIC syntax , and then to apply the numeric—

output—representation operator to this canonical—form . The translation to

canonica l - fo rm is implementat ion dependent;  however , the numeric—output—rep-

resentation semantics are not dependent on internal numeric representation

factors. Numeric—output—representation classifies the canonical—form , selec ts
the printing format-and converts the canonical—form to the format selected.

The implementation dependent factors that influence print representation (e.g.,

significance width , class ranges) are app lied in this process. It is important

21
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to realize that the implementation parameters of internal value representation

and those of outpu t prin t represen tation , while naturally related in implemen— -

tations , are given separately by this method ; a great deal of flexibility is
thereby provided with which to describe implementation families.

Complemen ting the descrip tion of statement ef fec ts is the spec if ica tion
of statement sequencing semantics. The same simple sequencing rule applies to

all the statements just described; namely, advance to the next exect.table

statement. This is described in terms of the global variable current—statement

and the sequence—of—statements—in the Minimal BASIC program. The sequence—of—

statements—in definition directly forms an order-~d list of statement nodes from

the parse tree representation , while current—statement then contains the node

of the statement presently being interpreted . Simp le sequencing, as done her e ,
then involves moving forward from the current—statement position along the

sequence—of—statements—in the program to the next executable statement node.

This successor node is then assigned to current—statement , and interpreted

of that statement initiated. The semantics of simple—con trol—statements are

found in the specification of their successor semantics; they have no effective

computational part. For instance , the branching influence of a goto—statement

is found in the definition of goto—statement—successor . Here, the destination

line number is extracted and a statement line with a matching line number value

is sought. If one is found , the node of that statement is assigned to current—

statement and the control branch thus realized. The situation for if-then—

statements and on—goto—statements is similar.

However , other control statements are more difficult to model. The gosub—

statement has an effects part that locates the r ode of the f i r s t  executable

statement after the gosub—statement and places this at the front of a sequence

assigned to the global variable return—point—list. A semantic test is made at

this step to see that the length of this sequence , which corresponds to the

number of outstanding gosub—statements , is within its established limit. The

successor of a gosub—statement is then found exactly as was the goto—statement

successor. The semantics of the accompanying return—statement are then given

by return—statement—successor. That specification calls for the statement node

at the head of the return—point—list to become the current—statement , after

wh ich the node is removed from the return—point—list. By this means , a simp le

stack model is used to describe gosub/return semantics.

22



The control  semantics  of for—blocks  are more complicated . They are

essentially described in terms of a sequence of triples , the sequence being
assigned to the global variable active—for—block list. Each triple consists of

the control variable , the value of the limit, and the value of the increment

associated with a particular for—block. This entry is made when the effect of

a for—statement is being computed upon for—block initialization . At the same

time , the initial value of the loop variable is found and assigned to the con-

tr ol variable. The successor of a for—statement depends upon the value of the

control variable . If the limit value has not been exceeded , then the next

executable—statement (i.e., the first statement in the for—block) is made the

current—statement. If the limit has been exceeded , the mos t immediate lex icall y
f c l l~’wing n e x t — s t a t e m e n t  having the same control  variable is sought , and
:t— successor becomes the current—statement. Additionally, the triple 

-

L-r the terminated for—statement is deleted from the active—for—block—list.

This specification makes clear the nature of loop testing and emphasizes

the s t a t i c  no t ion  of fo r—blocks  that  has been adopted for  Minima l BASIC . The
effect semantics of the next—statement cause the value of the control variable

to be modified by the loop increment value held in the active—for—block—list

sequence. The successor of a next—statement is always the most immediately

prior for—statement with the same control variable (another affirmation of

the static for—block structure). Note that a global variable is used in our

specification to distinguish between block initialization and iteration . This

var iabl e, first—time—through , is set 1/FALSE when iteration via next—statement

successor is occurring; that setting prevents for—statement creation of another

act ive—for—block—entry for that for—statement , and it then is immediately set

OTRtE. This variable is thus °FALSE only for the very brief interval between

the completion of next—statement interpret tion and initial testing within

the definition of for—statement—effect.

The semantics of storage modeling, for  ass ignmen t and ref erence , are pro-

vided by the facilities of S E M A N O L ( 7 6 )  and the definition standard-name—of.

The SEMANOL(76) functions of OASSIC,N_LATEST_VALUE and #LATEST—VALUE are used

d i rectly throughout the specification , with the naming reference being formed

by st;indard—name—of. Because Minima l BASIC has only very simple data structures

and referencing rules , there is no need for comp lex storage models; hence,
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abstract reference names can be used without any need to descend to h i t - l e v e l

machine parameterization. Simple—numeric—variables and string—var iohies retain

the name given in the Minimal BASIC text (e.g., “N” has a standard—name— cf ‘
~~~~~,

“C$” remains “CS”). Parameters in function definitions are q u a l i f i e d  b t i~
function—name (e.g., “FNK (A) ” would lead to a standard—name—of ‘F:K~\): t !~~s

simp le device satisfies the scop ing rules of Minimal BASIC . r~eri c— a rr~ ’.-

elements follow much the same pattern (e.g., “B(4 ,2)’ becorres h( , , ) ‘

process) but - are somewha t more complex to descr ibe  s ince  s u h s c ri ~~t exp rt-~~- i n s

must be evaluated and the value then normalized. This normaliza tio n causes

subscript values to be rounded to integers , converted to canonica]—f~ nT , ar~
have any leading zeros removed. For instance , 0 1” , ‘ 1 ’ , and IlL -I ” art ~11

t rans la ted  to “1” . Subscript value s are a lso t e s t e d  a g a i n s t  t h e i r  a l l o v e ~i

range , whether declared or implied ; thus this se~nant ic ope ci ficat ion pr ov ide s

run—time bounds checking. This method of name derivati on is s imp le  and d i r e c t ~
it should be easily understood .

Expression evaluation semantics are given by t h e  s t r i n g — v a l u e  and nun~- n i c —

value definitions . Since Minima l BASIC does not  have s t r i n g  op e r a t o r s , ot r i n o - -

value is virtually trivial and need only recall a string—variable f ro r :  s

or remove quotes from a string—constant. Note again tl at  t h e  i n t e r n a l  r o n —

resentation of a string is identical to its r e p r e s e n t a t i o n  in the  M i n i r ~~ 1

BASIC programming language (and that this representation is likewise ident i - n

with that of SEMANOL(76)); thus the semantics are indeed tm p ieme nt at i n  ~ndt -

pendent. Numeric—value is more comp licated since ~iin ima i BASIC provid e ’ a full

range of numeric expression possibilities. Numeric—va l ue defi nitio n also

requires that the details of some implementation arithmetic he included , l i t

is, a SEMANOL(76) specification is always an implem entat ion if it is to he

complete and so able to produce i n t e r p r e t i v e  r e s u l t s ;  t h e r e f o r e , d e t a i l s  of a

precise arithmetic (as well as data representations) must be given . ft is

suggested later how a specification might be written to define imp l e m e n t a t i o n

constraints in terms of “closeness” to standard results. While that meth od

was not entirely implemented in our specification , our specification was v r i t t r

in anticipation that the method might he used and this consideration viii he

evident in the specification .
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Numeric evaluation thus uses three forms of arithmetic: implementation

ari thmetic , standard arithmetic , and canonical arithmetic . Operators for each

class are then identified by using one of these three terms as a prefix (e.g.,

standard—add , implementation—add). Standard arithmetic is a high precision

ari thme tic tha t is implementation independent; it is used to define standard
results against which imp lemen tation resul ts might be tested . Canonical

arithmetic is a subsidiary arithmetic , also implemen tation independent , that is

primarily used in defining standard arithmetic. Standard arithmetic operates

upon numeric—constants of any allowed Minimal BASIC syntax, while canon ical
arithmetic operates upon constants of a more uniform syntax. By converting

constants to canonical form , and performing ari thme tic opera tions upon Ca—

nonical constants, the semantics of evaluation are thought to be more easily
explained . The result of applying standard operators is to generate canonical

constants (since some choice of result representation must be made); canonical

operations likewise yield canonical results. One could , of course , write the
Minima l BASIC specification so that the standard ari thmetic were used as the

implementation arithmetic; we have essentially done this in past specifications.

However , we have introduced a distinct implementation arithmetic so that
constraints might later be included more easily. This approach may also help

make clearer where implementation defined factors intrude upon the programming

language def ini tion , since each implemen tation spec if ica tion can only be made
complete by providing descr ipt ions for  these de f in i t i on  names.

Since we have no particular computer to model, the implementation arith—

metic specified is a decimal one that is intended to provide the minimum sig-

nificance and range called for in the X3J2 draft proposal. This implementation

arithmetic is able to use the definitions of standard arithmetic , and so it is

br ief ly described in our specification. Various imp lementation factors are

then parameterized , examples being implementation—precision , implementation—

inf ini ty,  and implementation—zero . A variety of decimal implementations can

thereby be easily formulated . Implementation operations are tested for causing

overflow or underflow , attempting division by zero, or attempting an undefined

form of involution. The response to these actions is defined to be implemen—

~~tion independent in the draft proposal , and so is par t of the evalua tion
semantics , although the specific result is itself Implementation determined .
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For ins tance , implementation underf low is always to be responded to by return-

ing a value of implementation—zero; the algorithm thus appears in an imp l emen-

t at ion  independent par t  of the Minimal BASIC specif icat ion, but the d e f i n i t i o n

of zero is part  of the implementation dependent semantics section.

The semantics of numeric—value are then given in a recursive wa ( e . g . ,

the numer ic—value  of “A+B ” is given by a p p l y i n g  the  imp l e m e n t a t i o n — a d d  o p e r a tor

to the numer i c—va lues  of the  two o p e r a n d s ) ,  w i t h  the rescursion b e i n g  grounded

in cons t an t s , va r i ab le  r e f e r e n c es , or f u n c t i o n  c a l l s .  N um eric constants are

translated to an i m p l e m e n t a t i o n  r ep r e s en t at  ion by ex a c t  lv  t h e  san e method as

are inpu t  c o n s t a n t s .  The v a l u e s  a s soc iat ed  w i t h  v a r i a l  le  r e f er e n c e s  ar c- in  an

imp lementation form a l read y ,  thus  need onl y he r e c a l l e d  by ~rLATEST~ \~’.l hh .

Function calls are processed by invoking a semantic definition that (1)

determines the numeric—value of any argument—expression , (2)  ass igns this
value to the standard—name of the dummy parameter , and (3) then causes the

numeric—value of the function expression to be determined . Function definitions

are very simple in Minima l BASIC , thus their  semantic descrip t ion  is l ikewise

uncomplicated by obscure control factors .

A port ion of the semantic description of evaluation , named relation-

value, deals with specifying the nature of relational tests. The general

structure here is much like that used with expression evaluation in that

there is a string—relation—value part and a numeric—relation—value part. The

string—relation—value part deals only with equality or non—equality, and it

deals directly with the string representations since their syntax is i den t i ca l

to that of SEMANOL(76) strings . The numeric—relation—value part must consider

a variety of relational test options and do so with regard to the implementation

sensitive nature of these tests. The semantics of each test are thus given

in implementation terms upon implementation numbers. So, lust as there  is an

implementation arithmetic , there is a set of implementation relational oper-

ators (e.g., implemen tation—equals—test). These implementation relationa l

operators , as with ari thme t ic , are given in our specification in terms of the

corresponding standard relational operators.

The evaluation of numeric—supplied—functions (e.g., SIN , COS , LOG) is in-

tended to be Implementation specific in Minimal BASIC. In our specification .

this is shown by provid ing, in the implementation dependent part of the
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specif ica t ion , a definition for each function that is an interface to a
correspond ing external procedure. SEMANOL(76) has an // EXTERNAL—CAL L—OF operator
for such linking ; the interface definitions are then responsible for mapping

the internal representation of the actual argument(s) to the string format

needed by the ex tern al proced ure , and then mapping the resul t ba ck to the
internal format needed . By this device , library procedures can be used pro-

vided the library procedures themselves conform to the conventions of

EXTERNAL—CALL— OF. In particular , the external procedures must accept and

return string values.

While this description of evaluation is brief , the code involved is

rather lengthy because of a need to consider the boundary conditions and

otherwise provide  an imp lementation model of semantics , something other formal

description methods do not generally offer. The presentation is meant to be

one that can he read down to the level of desired detail; thus arithmetic

i n t r i c ac i e s  can be avoided if unwanted .

In addition to the specification elements already discussed , there is a

part of the specification that is composed of a collection of definitions that

constitute selector functions. These selector functions are app lied to the

parse tree to return specified nodes or values and to test the syntactic clas—

sii i~ at ion of a given node. These functions are meant to be obviously named in

order that overall specification readability can be increased by reference to

th em. They have been collected together because of their wide applicab ili ty
and commonality of purpose ;  they provide a low level of detail and are corres-

pondingly simple in their operation.

While a few forms of error testing were mentioned , the specification

throughout attempts to detect any “run—time ” error that can occur . In general ,

th ese were recognized in the X3J2 document and the response provided in the

specification agrees with that report. Since SEMANOL(76) provides an inter-

pret er approach to specification , the descr iption of these error conditions

and response semantics is easily done. The specification also has been

written so that each semantic definition includes , as a comment , an asser t ion
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- about the nature of its input values . The reader can thus readily ascertain

what form of arguments each definition is expected to receive. The assertions

are expressed in SEMANOL(76) notation so that their meaning is precisely given ,

but their correctness has not been computer tested . (To confirm these assertions

operationally is presently awkward , and would lengthen the specification to no

great advantage. We are contemplating the inclusion of an operational assertion

te~ting facility in later systems.)

I
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QUESTIONS OF INTERPRETATION

The preparation of the forma l SEMANOL(76) specification of Minimal BASIC

necessarily demanded a careful reading of the X3J2 document upon which the

formal specification was to be based. This analysis was done so that the needed

details of Minimal BASIC could be determined and a complete , precise model of

the Minimal BASIC programming language thereby formulated . Since a SEMANOL(76)
specif icat ion is a type of program, this process is similar to that involved
in translating any prose description into a computer program; as is true gezi—

erally, this process of “implementation” revealed many cases in which the X3J2

prose document was unclear or incomplete. This was true despite the great

efforts made by the TRW project group to resolve such questions through contin-

uing analysis of the X3J2 document ; that is, we made a much more intensive

ef fort to resolve problems than we would expect most other readers of the

draft proposal to make.

Our analysis was also unique in that we deliberately sought to identify
statements that seemed to allow multiple interpretations. We were not seeking

to write a formal specification that could be defended as consistent with some

interpretation of the X3J2 document, as one might do when implementing a

language processor, rather we were attempting to formalize (i.L , make more pre-

cise) the notion of Minimal BASIC given in that X3J2 document. Thus we sought to

be very sensitive about recognizing the points at which we were making decisions

that were at all questionable with regard to reasonable interpretations of the

draft proposal. While this can sometimes seem to be quibbling , it is important

that an ANSI standard be uniformly understood ; in our case, it is also impor-

tant that the derivation of the SEMANOL(76) specification be explained .

The list of items given here reflects problems in the X332/76—Ol draft ,

each of which was reported to RADC in considerably greater detail. Each item

is then accompanied by the interpretation that was provided in the SEMANOL(76)

specification that was delivered. These items reflect one consequence of

using the formal SEMANOL(76) methods; namely , the identification of areas of

imprecision and incompleteness in conventional programming language specifica-

tions. They also reveal problems to which we had to devote considerable

energy . The ambiguities were these:
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1. While the X3J2 draft proposal does consider implementation represen—

tation of numbers , unl ike many such specifica tions , its coverage is
inadequate. It fails to define the sign of zero , if zero is un iquel y
represented , or to say if both plus and minus zero are to be allowed ;

contemporary computers are cer ta in ly not un i fo rm in this regard , so

different readers ray i :ot u ra l ly  come to different conclusions. The

answer to this que stLn can affect (1) the value of relational expres—

sions and (2) the value of zero divided by zero , since the resul t of
div ision by zero is to have a magnitude of machine infinity and the

sign of the (zero)  numera tor .  There is also a quest ion as to whether

the implication that the representations of the largest magnitude

values (i.e., machine infinities) and of the smallest non—zero mag-

nitude values (i.e., machine infinitesimals) are to be the same for

the corresponding positive and negative cases is intended. That is ,

a symmetric representation seems to be intended (e.g., negative—

machine—infinity and positive—machine—infinity will have equal mag-

nitudes). While this inference seems reasonably clear , and the benefits

of symmetric representation are recognized , many current machines do

not support such a symmetry, and to impose this requirement for their

may lead to unwanted i n e f f i c i e n c y  in con fo rming  implemen ta t ions .

Because of this , a question of in tended meaning does e x i s t .

To prov ide generali ty , our specification includes both positive—

machine—infinity and negative—machine—infinity so that these magnitudes

may be defined independently.  A p o s i t i v e -m a c h i n e — i n f i n i t e s i m a l  and

negative—machine—infinitesimal are specified in an analogous way .

For clarity and semantic predictability, we have defined zero to have

a singl e repre sen ta t ion, machine—zero. These parameters are then

used in the implementation dependent semantics so that each r o h r e - ~en-

table number cannot be greater than positive—machine—infinity ner less

than negative—machine—infinity. Furthermore , only one of the relations

of equality, greater than , or less than can hold between two numeric

representations. The only numeric representation between positive—

machine—infinitesimal and negative—machine—infinitesimal is machine—

zero. This choice of implemen ta tion parame ters should al low a fu l l
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range of Minimal BASIC language processors to be modeled precisel y.
The specification delivered has defined the magnitudes of non—zero

machine limits to be the same in both positive and negative directions;

it thus agrees with the draft proposal implications. The sign of zero

has been spec ified to be plus , a~ tha t choice seems “na tural ’.

2. The description of for—blocks is especially troublesome since the

draf t proposal , beyond being unclear , did not permit us to derive
a defensible model f rom what was given. Much of this problem appears

to result from inadequately distinguishing between the dynamic and

static properties of for—blocks . While it is recognized that both

compiler and interpreter oriented processors are to be allowed , the

wording of the draft proposal does not seem to be consistent wtth any

imp lementation model.

We have chosen to prepare a specification that seems compatible with

what we believe the draft standard is attempting to say. In this

specification , the for—statement and the next—statement are defined

in conjunction with each other . The physical sequence of statements

beginning with a for—statement and continuing up to and including

the first next—statement with the same control variable is a “for—

block”. The first and last statements in a for—block are its for—

statement and its next—statement , respec tively. Any other statements

in a for—block are its interior statements.

Each minima l BASIC for—block is either inactive or active ; each is

inactive at the initiation of a program. A for—block becomes active

only upon execution of its for—statement ; thus a physically contained

for—block does not become active upon the execution of the for—state—

ment of one of its physically containing for—blocks . An active for—

block becomes inactive only when either (1) the normal exit from the

for—block is taken or (2) control is transferred to a for—statement

(which may or may not he the one associated with that for—block)

having the same control—variable. Thus contained for—blocks are not

deactivated ~.~hen containing ones are.

A p r og r a r  a t t . - r d - t  t i  execute the next—statement of an inactive for—

block is an error.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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3. As given, the semantic definition of the draft proposal can generally

be construed to define a static declarative nature for DIM and OPTION
statements that is unaffected by whether such statements are executed

or not (i.e., such statements are always declarative and may also be
executed). However, this matter is confused by the resolved questions

part of the draft proposal which fails to adequately recognize the

differences between static and dynamic interpretations that can exist.
In particular, it is not made clear how initial (pre—execution)

conditions are established ; this is especially needed so that later

enhanced versions that permit (multiple) executable declarations may
be consistent with this minimal version.

Our specification treats DIM and OPTION statements as being purely

declarative ; they are not executable—statements. Only one OPTION

statement is allowed in a program , and only a single dimension—state-

ment may refer to a given array name; these rules are imposed by con-

text sensitive restrictions and so enforce a static interpretation of

these statements.

4. The number of printable characters in an implementation output line,

called the “margin”, is not clearly defined nor is its execution

effect. In the definition of margin , it is unclear whether the end—

of—print—line character (or characters) is to be included or not in the

the margin count. The description of print then is contradictory as

to whether the last print position of an output line can he used , the

confusion being introduced for print items that exactly fill out the

last print zone of a line and so cause the columnar position , which

points to the next available print position , to exceed the margin.

The draft proposal seems to say that such items are to be printed on

the next line.

Our specification does not consider the end—of—print—line token to be

included in the marg in value . It also assumes that the last print

posit [on in a line is meant to be used for printable characters; thus

it will allow p r i n t  itens to exactly fill the last print zone of a

line.
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5. There were two unresolved questions relative to NR2 print conversion.

First, if d (the number of significant decimal digits to print) is

given an implementation value less than th~ - required to exactly

represent every implementation numeric representation , then it is not

stated whether truncation or rounding should be used for reducing the

precision to d significant digits. Second , the criterion given for

selecting NR2 form conversion is unclear in defining a decimal in-

terval and is inappropriate for non—decimal implementations.

Our specification first translates an implementation numeric represen—

tation to a standardized output numeric representation. While the

mapping itself is implementation specific , the numeric output repre-

sentation, which conforms to the syntax of Minimal BASIC , is not.

Decimal rounding is then applied to this output representation when

the precision of a constant must be reduced for printing. The test

for NR2 form conversion is applied i’fter rounding and employs the
inclusive interval [.l ,99:::9], where ~. 9’s are used in the upper

bound . This interval is consistent with the draft proposal if decimal

rounding is applied to a decimal numeric representation. (But observe

that if an implementation numeric representation is not decimal,

specifying rounding and the NR2 interval in decimal terms can impose

unexpected processing burdens on an implementation.)

6. It is unclear whether leading zeros in the exrad of NR3 conversion

forms for printing are permitted .

Our specification does not provide leading zeros.

7. The effect of the comma separator in print lines is ambiguous since

the phrase “current print zone”, used in describing that effect , is

nowhere defined. Specifically, the evaluation of the comma when the

columnar position is equal to the first print position of a zone is

uncertain; should it have no effect or generate a zone’s worth of

spaces?

Our specification effectivel y defines the current print zone to be

the one that includes ~-he present columnar position (rather than the

print zone that received the last output character). Thus a zone of
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spaces , or an end—of—print—line , is generated in the situation just

described . This specification agrees with a comment made in the

resolved questions part of the draft proposal.

8. The issue of when a print line must be presented to the user is un-

answered in the draft proposal. Is generation of an end-of—print—

line sufficient to cause the current print line to be immediately

output? What happens if the current print line is not empty when

program execution terminates?

Our specification assumes that end—of—print—line generation is neces-

sary and sufficient to cause the current line to be transferred to

the output device; on termination , a non—empty current line is returned

to the user. In large measure, this solution mimics that of conven—

tional interactive implementations.

9. The specification of what is to be done upon encountering underf low

when converting a number in an input—reply is directly contradictory

in the draft proposal; one statement is made that the value under—

flowing should be replaced by zero, while elsewhere it is stated that

such underf low is an error .

The weight of the d r a f t  proposal seems to be on the side of a ss ign ing

a zero value, thus that is what we have specified in all cases. Add—

itionally , our specification is written so that generation of a non-
fa tal error message is mad e an imp lementation option that is determi ned
by a parameter setting. Thus production of this message is easily

turned on or off.

10. It is not specifically stated whether or not program constant con-

version must agree with the conversion applied to constants received

by INPUT; tha t  is , whether the implemen ta t ion  r e p r e s e n t a t i o n s  of tw-

syntactically identical constants , one of wh ich appe ars in the ~ in irT a~
BASIC program itself and the other of which appears in an input r ep ly ,

are to be identical.

While no th ing specif ic is sa id , the tone and orga ni za tion of the

specification imply that the conversions should be uniform . We use

the same implementation conversion rule in both cases , and so expl icit ly
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show that these conversions are meant to be the same.

11. The action to be taken in some error conditions is unspecified ; these

are instances in which a given property “must” (or “shall”) obtain

but which is ignored in the error conditions section part of the

draft proposal. Specifically ,

(1) “The value of the integer represented by a line—number must

he non—zero;...”

(2) “The declaration for an array, if present at all, must occur

in a lowered numbered line than any reference to an element

of that array.”

(3) “...(the number of arguments must correspond exactly to the

number of parameters).. . “

(4) “A function definition shall occur in a lower numbered line

than that of the first reference to the function”

We have taken each of these to be a fatal error that is detected by

a context—sensitive test app lied prior to execution interpretation .

12. The rules that govern the appearance and treatment of strings having

a length exceeding 18 characters seem unclear . Strings may appear

in

(1) relational—expressions within if—then—statements ,

(2) string—expressions in string—let—statements ,

(3) string—expressions in print—items ,

(4) input—replies and data—statements.

The treatment to be given long strings in each of these cases is not

given exp licitly , or seems inconsistent in some instances.

Our s p e c i f i c a t io n  imposes  no syntactic restrictions upon string length

in either th~ cont ext—fr oe grammar or in the context sensitive restric-

tions initiall y applied. Thus long strings may appear freely w i t h i n

the  t~~:- .t of  a ‘-~in ima 1 BASIC p rogram.  S t r i n g  express ion  eva lua t ion  is

di ne dvn iri i c a l l ’ -’ , °u t  it too disregards string l ength. However , as—

Si ~~~n - , - : r ii ’,~ variables is s u b j e c t  to the condition that strings

have a 1 rn~ equal to or less than ~ax—assignable—str 1ng—length , an
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imp lementat ion parameter whose in teger  value must he at least  18.

This spec i f i ca t ion  permi t s  long s t r ings  to be p r i n t e d , as c l ea r l y

intended in the draft proposal , and also to be tested in relat io nal—

expressions. It also permits long s t r in g  c o n s t a n t s  t i  appea r  in

s t r i n g — l e t — s t a t e m e n t s , hu t  such assi g nm e n t s  ar i- gr event ed (i.e., an

attempt to execute such a s t a t e m e n t  i s  an e r r - -r). Sim ilarl y . long

s t r i n g  c o n s t a n t s  may appear  in  d a t a — s t a t ~~m c n t  s 1-nt cannot he ci i nvt - r t t - d

when processed by a read—statem ent . Long st r i ngi-  i n  i ~ t —r i -u i i s  an

l ikewise  r e j e c t e d .

13. There is a q u e s t i o n  as to wh e t h er  i t  i s  l eg a l  to  have - a r in t ti -ri a-~
u s e r — d e f i n e d — f u n c t i o n  d e f in  i t i ns  t l : at  do n - i  f i t  ri -roe the r~ r ~

:- i - t i - n

in the expression. For example , is

100 DEF FNZ(X)=A (9)*’i

to he a l lowed?

Our s p e c i f i c a t i o n  a l lows such u sage ; thus t h e  I - i a t -  is cer~~
legal.

There are  a number of lesser amhigu i  t i e s  that prevol :-d cons i Jer hl~ -

cussion and anal ysi s of t h e dr af t pr lpos :1 I. Iii I u Se  i . : O i O . ‘ n ~~O l l O 
-
~

i n t e rp r e t a t i on  could be cons t ruc t ed  without great di i  I icul tv; Levi Vi . L , - i

i n t e r p r e t a t i o n s  carr ied  w i t h  them a r e c o g n i z e d  d e g re e  ‘f doubt t h a t  o t h e  r~
would arrive at these same conclusions. These amb i guiti es are e x n m ; - i i - s  ef

t roublesome w o r d i n g  t ha t  should  be c l a r i f i e d  t e  improve  the  u n i f o r m i t y

reader  u n d e r s t a n d i n g  of the d r a f t  p co p o s a l .  (We have suggested edit orial

changes for most of these in other reports.) B e n a u s e  of t h e  critical ira - s i S

t~ ~t we were attempting to do , these amb i guities probabl y caused us F Y ~~

than t h e y  w o u l d  other readers . These ambiguities includ e t h i - foilca - in’:

The nature of u s e r  function del inition , w h e t h e r  by d e f — ~~t: : t t O i l t

d e c l a r a t i o n  or exec la l i on , is  u n c e r t a i n , l a r g e l y  h e c a i i s i .  e t  -n usii - 1

C i  si wh er e  abou t  t h e  d y n a m i c  and s t a t i c  qu i i l  i t  ics of sti r hec~

s t a te m en t s .  Ou r  sp e c i f ic a t i o n  ~~‘ i i o i i h i - r s  u s e r  funct ion de t m i t  m e n  t o

h i -  .i ~~t t i c  l an g u a g e  p r o p e r ty ;  del—statements are n t  t i e a t i - .1 i s

n.:e- utahle s t - i t  i- mi- n t
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2. Except in the formal syntax, there is a general failure to distinguish

between “statements” and “lines”. The term “statement line” is some-

times used in an attemp t to gain greater clarity. The intended mean-

ing can be determined , but the critical reader ’s task is more difficult

than it need be.

3. The phrase “line number” is sometimes used when “line number value”

is indubitably meant.

4. The discussion of optimization is not clear at all. This is a problem

that was reported , but that did not directly affect the specification

written since the impact of optimization was ultimately ignored in

that specification .

5. The description of gosub—statements is ambiguous in that one inter-

pretation of the given wording would effectively allow an unlimited

number of unreturned gosubs. Our specification introduces an im—

plementation parameter for this number and assigns it a value of ten;

this value is one interpretation , and a likely one, for the descrip—

tion that appears in the draft proposal.
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FORMALIZATION OF IMPLEMENTATION DEPENDENCIES

Acceptable methods of characterizing those aspects of programming language

design that are conventionally left to be defined through implementation are

not yet available. The difficulty appears when attempting to formulate speci-

fications so that:

1. Intentional machine and environmental differences may be clearly and

precisely stated. At the very least, differences are expected to

exist among language implementations because of differing data rep-

resentations, computational incompatibilities , conflicting error

treatments, operating system induced discrepancies, etc. The extent

of differences among implementations will largely be determined by

how strongly code transferability has influenced the design of a

particular programming language, but differences are expected even for

languages commonly considered “machine independent.”

2. OptimizatioL options can be formally given. Different language

processors are expected to order operations differently and otherwise

generate code that is meant to capitalize upon the unique features

of a given machine. The code produced may also be influenced by the

compiling techniques that are employed to improve compiler efficiency.

Computing efficiency is thereby realized but in ways that are hard to
- 

- 
describe precisely.

Thus one goal in writing language standards is the construction of a specifica—

tion that describes the idealized (machine independent part of the) language ,

while iso permitting clear identification and specification of features whose

meanings are left to be the consequences of a given execu tion environme nt. If
possible , the implementation dependent parts should be described to the extent

that the range of acceptable implementations can be clearly made part of the

language defining specification.

Because SENANOL(76) is meant to provide an operational specification, the

SEMANOL(76) specification must be made complete through some form of precise

specification for all the machine and implementation factors that could other—
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wise be dismissed in a conventional specification method ; machine details and

evaluation order cannot be ignored here. That is, the complete SEMANOL(76)

specification is itself an. implementation, and consequently it must include a

specification of semantically significant machine features. This is possible

with SEMANOL(76) since its data representations and operators are indeed machine

independent and capable of modeling conventional machine features. A conscien-

tious effort is then made , as in writing the SEMANOL(76) specification of

Minimal 3ASIC , to ~eparate these machine details from the other code so that

they do not obscure the broader semantic specification. For example, the

implementation specific semantics of arithmetic operations are described by

the SEMANOL(76) metalanguage, and then appear in a distinguished part of the

specification that is meant to describe the machine—dependent elements of the

semantics. Standards for similar computers can then be prepared by revising

the SEM.ANOL(76) code that expresses these machine dependencies. In fact, a

strong effort is made to parameterize these features so that a family of

specifications can be built, each differing from the other only in the values

given to these machine dependent parameters.

It should also be noted that machine details can oftentimes be given in

external functions. The SEMANOL(76) metalanguage supports this option through

the #EXTERNAL—CALL—OF feature. As a result, a library can be built that con-

tains routines to simulate the hardware and operating system functions that

are needed to complete the description of the language being defined . Implemen-

tation dialects can then be distinguished by separate libraries.

The difficulty with this type of approach is that it produces a specifica-

tion particular to a given computer or, at best, to a class of similar machines.

If the language under definition is to be widely used , the SEMANOL(76) method

is then guilty of overspecification in some respects. (But note that some

programming languages have been designed so that the areas of specification

left for implementation determination are so extraordinarily broad that each

language implementation can reflect virtually a different language. In such

cases, any usefully complete specification method will necessarily correspond

to an implementation and so might be thought overspecific.) For some language

features , there may be no way to relieve this problem. In such cases, as for

unrestricted pointer variables , it may simply be necessary to supply alternate
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definitions for each implementation that is envisioned. That is, there are

likely to be programming language features for which suitable constraints

cannot be formulated nor a suitable degree of abstraction obtained . However,

for arithmetic it appears that SEMANOL(76) can provide a useful implementation

independent way of characterizing what is to be allowed and doing so in a

F forma l manner. This method was investigated in this contract relative to its

use with Minimal BASIC and , although not yet fully developed , it appears very

attractive.

The central idea is that (1) the representation of constants and the

results of arithmetic operations can be given a “standard” definition , (2)

each implementation will likewise be described in terms of its corresponding
— manner of representation and operation , and (3) the implementation and standard

results must agree to some given precision. Thus a condition such as

standard—floating—add(x ,y)—implementation—floating—add (x ,y) -<c(add,x,y)

must hold . The standard—floating—add function would be written in the SEMANOL(76)

metalanguage since , as the standard function , it must be fixed as well as

available for public review. We presently expect the standard arithmetic rep-

resentations and operations to essentially reflect a machine whose precision

exceeds that of contemporary machines. Implementation—floating—add can either

be expressed in the SEMANOL(76) metalanguage or as an external function (but

it must correspond to what happens for a given language processor upon a given

host machine). The allowable difference , denoted by c , would be given by

SEMANOL(76) specification and could be expressed as a constant or a function .

It would be desirable if c might itself be expressed as an implementation

independent constraint and so might be a fixed part of the standard definition;

however, it is not clear that this can generally be done in an acceptable way .

But even if e is itself selected on an implementation—by—imp lementation basis ,

its appearance in the SEMANOL(76) specification provides a basis of conformance

testing. It also makes clear the quality of a given implementation relative

to a standard implementation , and can allow qualitative comparison of various

implementations to be done.

This approach to the semantics of evaluation would be expressed so that

Minima l BASIC “+“ , to continue the example , is interpreted to mean implementation—

floating—add , subject to the constraint that the value returned must be within

c of the standard —floatin g-add. Thus both add operations would be evaluated ,
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as would c, and the computation would be allowed to continue (i.e., would be

correct) only if the constraint were met. The value carried through the

calculation would be that of the implementation—floating—add. This might be

given in SEMANOL(76) as follows:

#DF floating—add (x,y)’’implementation—floating—add(x,y)#IF

absolute—difference(standard—floating—add(x ,y) , implenientation—
floating—add (x,y))<epsilon(’fad ’ ,x ,y) ;

~~rror #OTHERWISE#.

In terms of the partioning of the SEMANOL(76) specification , the defini-

tions of floating —add and standard—floating—add would appear in the common

part while implementation—floating—add (and its subsidiary definitions) would

be part of the implementation dependent portion of the specification . As

suggested, we hope that epsilon can be given by a generalized function and so

be part of the specification; if such generalization cannot be achieved , then

the value of epsilon would appear in the implementation dependent part of the

specification.

Thus a SEMANOL(76) specification can make very precise what the operation

denoted by “ +“ means, for instance. Conventional specifications leave such

basic operations undefined , although the informal expectation is that addition

will be done using the instruction and data representations natural to the

host computer. Whether this notion should be extended to built—in functions

(e.g., SIN, COS, SQRT) is uncertain since it appears that language designers

often intend that certain functions be provided but really are uninterested in

their specific operation (i.e., semantics). The question is thus seen as one of

of deciding whether built—in functions are to be part of a programming language ;

if so, then language design must include an effort to define these functions

much more carefully than has been true in the past. It seems SEMANOL(76) can

readily provide the needed clarity of definition here too if it becomes ap-

propriate to do so.

The second part of the problem deals with optimization . SEMANOL (76)

specifies an exact sequence of steps to be performed in executing a computation.

That is, the semantics are described in a totally deterministic manner. Thus

the SEMANOL(76) method of describing computation fulfills the declaration of

the ANSI/X3 committee that language standards should specify the order of
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expression evaluation. However, the committee did not rule out allowed

deviations from that order, and the normal demands for computer efficiency,

in any case, can be expected to result in continuing efforts to generate better

code through the use of clever optimization techniques. To accomplish opti—

mization demands that compiler writers must have some latitude in choosing how

code is generated. In consequence, the ability to optimize means that a com-

piler is free to generate code which may produce answers which differ from

those which would be obtained by strict adherence to the stated evaluation

rules.

We would like to have a method of rigorously describing allowable opti— -

mization choices , and desire such a method of optimization specification to be

reflected in the output from the SEMANOL(76) Interpreter. Our belief is that

a partial solution to this problem can be developed by dealing with optimiza-

tion in terms of alterations to the parse tree, and including within the

standard specification a set of constraints that govern what an implementation

may legally do in transforming the parse tree. Each implementation could be

represented through inclusion of its optimization procedures, expressed in

SEMM~OL(76) or by an external function , within the total SEMANOL(76) specifica-

tion . This optimization procedure would correspond to the optimization al-

gorithms used by a given implementation . This optimizing procedure would be

activated after the context—free parse (and context—sensitive testing) would

be performed but before execution interpretation would be started . The revised

(i.e., optimized) parse tree would then be tested to determine that it was

still syntactically derivable from the original grammar (and met the context—

sensitive tests), and that the transformations made were allowed under the

optimization constraints that exist for the language being defined . This test

for parse tree equivalence would be empressed in SEMANOL(76) code. Observe

that optimization would be dealt w itl - here in source language terms; this

would be necessary if one is to characterize optimization for a variety of

computers. This method does deal with a static form of operation reordering,

such as a compiler might make ; it does not consider any form of dynamic opti—

mization that an interpreter or computer might be able to achieve during

execution.
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The fact that the allowable optimization transformations for a language

could be given precisely would be very helpful. The availability of the

SEMANOL(76) Interpreter , and so of a way to test implementation optimization

algorithms, would also be useful. It would provide an excellent tool for

developing optimization techniques that meet the standard requirements for

optimization. It also would provide a method by which implementation confor—

mance with its stated formal characteristics could be tested , a more precise

testing mechanism than has heretofore been available with SEMANOL(76).
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CONCLUSIONS AND RECOMMENDATIONS

This project was successful in preparing a SEMANOL(76) metalanguage speci-

fication of the Minimal BASIC programming language that was complete , precise

(by the nature of the SEMANOL(76) metalanguage), and well tested . The exten-

sive testing of the specification that was done , by means of the SEMANOL(76)

Interpreter computer program , insured the soundness of the Minimal BASIC speci-

fication product. The specification process itself caused many questions about

the X3J2 draft proposal to be identified and reported ; the app lication of

SEMANOL(76) thereby provided a useful critical analysis to the conventional

Minimal BASIC definition document. This project thus met its objectives ,

~~d so created a useful formal specification of Minimal BASIC .

This project was also able to deal somewhat with the problem of programming

language dependency upon implementation factors. This effort is evident in the

form given to the SEMANOL(76) specification of Minimal BASIC , which was written

so as to be especially revealing about those aspects of the programming language

that are meant to be dependent upon the implementation of each language proces—

sor. In addition , a prospective means of formally characterizing machine arith-

metic and optimization options was developed. While this development was prom-

ising, it was unexpected and so could not be fully app lied to Minima l BASIC

because of contract limitations .

There are two natural extensions of this work that should be considered

for future activity. The first extension is to update the Minima l BASIC

specification we have delivered to agree with the ANSI standard that is even-

tually adopted. As we have observed in this report , the specification prepared

in this project reflects the X3J2 committee draft proposal of January 1976.

At least one other version has been produced , in Decemb er 1976 , that changed

the Minimal BASIC programming language slightly; other changes and clarifications

remain possible. These changes ought to be incorporated into the formal

specification we have provided with SEMANOL (76). The second extension is to

attemp t to apply the proposed methods of formally dealing wi th ari thme tic and
optimization standards for language processors. Because Minima l BASIC is a

somewhat simp ler language than most , and because the matter of imp lementation
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dependencies has already been faced in the draft proposal, Minimal BASIC

appears to be an excellent vehicle for attacking this difficult theoretical

and practical problem. Taken together, these two extensions would provide a

uniquely comprehensive specification for Minimal BASIC.
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ADDLINDUM

Operating Instructions for the SEMANOL(76) Specification of BASIC

Before any Minimal BASIC programs can be interpreted using the SEMANOL(76)
Executer and the SEM.ANOL(76) specification of Minima l BASIC , the user
must be able to reference, from nis working directory , both the translated
SEMANOL(76) specification of Minima l BASIC (SIL code) and the SEMANOL(76)
Executer. In a one-time operation , this is done by creating links from
the user ’s directory to these files. The link to the SIL code can be
created wi th the following Mu ltics command :

1k > user 
— 

dir 
— 

dir > 5550c0840 > Hart > file 22.basic.76

Since many different functions can be performed by the SEMANOL(76)
Executer , many links from the user 1 s directory to the Executer need to
be created . To simplify this task for the user, an exec corn segment
has been written which , if executed , will generate all o~ the necessarylinks . Therefore , the user needs fi rst, to generate a link to this
exec_com segment , and , second , to execute the segment. This can be done
with the following sequence of coniiiands:

> user_ dir — dir > 5550c0840 > ERftnderson >
new interp > check > executer_link.ec

ec executer_link

Once the appropriate links have been constructed , the Minima l BASIC SIL
file must be initialized and loaded . This is done wi th the following
comand :

semanol file22.basic.76

This step needs to be performed only once during a single user process.
After it is completed , as many Minimal BASIC programs as desired can be
successively interpreted. The output from this comand consists of
several pairs of lines of the form

scomp called
scomp returns

The Minimal BASIC program to be interpreted should be conta i ned in a
Multics segrrent, for example one named file.prog. Each line in the program
rm~st be terminated by a line feed ([LFJ ) character; this character is inserted
naturally by the norma l editing process. If there is any input data ,
that is , information to be read by an INPUT statement , it should be
contained in a second Multics segment, e.g., file.data . Again , each line
should be terminated by a line feed . Then , to run the Executer , the
following cornand should be used:
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run file.prog file.data

~f there is no input data , the appropriate command is

run flle.pro g

The run command can be executed as many times as desired , using different
values of file.prog and/or file .data ; each such execution causes inter-
pretation of a single BASIC program.

The output from a run comand consists of the results of executing any
PRINT statements encountered in the BASIC program . In addition , if any
INPUT statements are encountered , a question mark ( ? )  is output , followed
by a space and the line that is to be input. This mimics the interactive
protocol . If any errors are encountered while processing the specification
with the current BASIC program as input~messages are output to the user .Such errors can ind~cate either an erroneous BASIC program or a bug in the
SEMANOL(76) specification of BASIC. The former kind of error is designated
by a descriptive message (e.g., “subscript out of bounds ”); if the error
is fatal , the following four lines also are output:

execution terminated
mstop called
in fatal-error at location 23:level 7
STO P

An error in the SEMANOL(76) specification of BASIC, on the other hand , is
indicated by the followi ng line :

merr called

Finally, on termination , a few lines are output by the Executer.

The SEMA~OL(76) Exeucter has several additional capabilities , which are
used mainly for debugging language specifications written in SEMANOL(76) .
For the most part , these features will be discussed in the Executer docu-
mentation. However , one feature that may be of some interest now is the
ability to trace the evaluation of a SEMA ’~OL specification (of Minima l
BASIC, in this case). The trace feature itself has many different options ,
not discussed here , but to turn the full trace on , the following cornand
suffices:

tron #CONTROL

This corrirand should be given following the sernanol cornand , but before a
run command. It should be noted that the amount of trace cenerated is quite
extensive , even for the simplest BASIC programs , so it is not recommended
that this feature be used in the normal course of operation. To turn the
full trace off, if it is on , the following command should be given preceding
any run comma nd:

troff #CONTROL
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MFTRIC SYSTEM

BASE UNITS:

~~~~uan~~~y~~ 
Urnt ~~~~~~~~ ~~~~~~ la

length metre m - - -

mass kilogram kg - -

t ime second s

electric current ampere A -

thermodynamic temperature kelvin K -- -

amount of substance mole m o )

luminous intensity cande la cd • - -

SUPPLEM ENTARY UNITS:

p lane angle radian rad

solid ang le steradian sr

DERIVED UNITS:
Accelerat ion metre per second squared rn/s

activity (of a radioactive sou rce) disintegra tion per second - - 
( disintegratio n)ls

angular accelerat ion radian per second squar ed - - rad/s

angular velocity radian per second - .  m d/ s

area square metre - - - m

density kilogram per cubic metre - - .  kg/ rn

electric capac itance farad F A.sN

electrical conductance siemens S AN

electric field strength volt per metre - . V/rn

electric ind uctance henry II  V.slA

elec tric potential differenc e volt V W/A

electric resistance ohm 
VI A

electromo tive force volt V W/A

energy jo ule 
N.m

entropy jo ule per kelvin .- JIK

force newton N kg.mls

frequency hertz Hz (cyclel’s

illurninance lux lx (rn/rn

luminance candela per square metre - - - cd/rn

luminous flux lumen I m cd.sr

magnetic field strength ampere per metre A/m

magnet ic flux weber Wb V.a

magne tic flux density tesla I Wb/m

magnetomotive force ampere A -

power watt w )Is

presaur e pascal Pa N/m

quantity of electr icity cou lomb C A.s

quantity of hea t joule 
N.m

radiant inte nsity watt per stera dian W~sr

specific heat joule per kil ogram-ke lvin I kg k

stress pasca l Pa N/ n,

thermal cond wt ivil y watt per metr e-kelv in - W m.K

velocit y metre per second - m

viscosity. dynami c pascal-secon d P~.s

v is cos ity , kinematic square metre per second - - mn/s

vo ltage volt V W’A

volume cubic metr e m

wavenumber reciproca l metre )w a ve l/ m

work joule I N.m

SI PRE HXES :

Multip li cation Fact or s JP~gfja S~~ y_mbol

I 000 001) 000 000 = 10° te ra
1 0(H) 000 000 = 10’ gigs C

1 000 000 = 10’ meg. M

1 000 = U)’ ki’o It

100 = 102 hecto~ h

10 10’ deka ’ da

0 1  10~~ 
,lecl~ d

001 = ii, - entl~
000 1 l0 ’ milll m

0 1)00 001 10~~’ 
micm

0000 t)00 001 10-’ fla flO

0 000 000 000 001 = ~Q ~ p u n  p

0000 000 000 000 001 10 ” femto

1) 000 000 000 00(1 ( 100 001 = 1 0 ’  
o t t o  a

To be avoided where possib li

I - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---- -— --
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Rome Air Developn wnt Genter

RADC plans and conducts research , exploratory and advanced
development programs in command , control , and communications
(C 3) act ivi ties , and in the C3 areas of inf ormation sciences
and intelligence . The princi pal technical mission areas
are communications , electromagnetic guidance and control ,
surveillance of ~jround and aerospace objects, inte7ligence
data collection and handling, information system technology,
ionospheric propaga tion , solid sta te sciences, microwave

• physics and electronic reliability, maintainabilitu and •

compatibili tq.
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